898 research outputs found

    Control Force Compensation in Ground-Based Flight Simulators

    Get PDF
    This paper presents the results of a study that investigated if controller force compensations accounting for the inertial force and moment due to the aircraft motion during flight have a significant effect on pilot control behavior and performance. Seven rotorcraft pilots performed a side-step and precision hovering task in light turbulence in the Vertical Motion Simulator. The effects of force compensation were examined for two different simulated rotorcraft: linear and UH-60 dynamics with two different force gradient of the lateral stick control. Four motion configurations were used: large motion, hexapod motion, fixed-base motion, and fixed-base motion with compensation. Control-input variables and task performance such as the time to translate to the designated hover position, station-keeping position errors, and handling qualities ratings were used as measures. Control force compensation enabled pilot control behavior and performance more similar to that under high- or medium-fidelity motion to some extent only. Control force compensation did not improve overall task performance considering both rotorcraft models at the same time. The control force compensation had effects on the linear model with lighter force gradient, but only a minimal effect on pilots? control behavior and task performance for the UH-60 model, which had a higher force gradient. This suggests that the control force compensation has limited benefits for controllers that have higher stiffness

    Planck Low Frequency Instrument: Beam Patterns

    Full text link
    The Low Frequency Instrument on board the ESA Planck satellite is coupled to the Planck 1.5 meter off-axis dual reflector telescope by an array of 27 corrugated feed horns operating at 30, 44, 70, and 100 GHz. We briefly present here a detailed study of the optical interface devoted to optimize the angular resolution (10 arcmin at 100 GHz as a goal) and at the same time to minimize all the systematics coming from the sidelobes of the radiation pattern. Through optical simulations, we provide shapes, locations on the sky, angular resolutions, and polarization properties of each beam.Comment: On behalf of the Planck collaboration. 3 pages, 1 figure. Article published in the Proceedings of the 2K1BC Experimental Cosmology at millimetre wavelength

    Dynamic validation of the Planck/LFI thermal model

    Get PDF
    The Low Frequency Instrument (LFI) is an array of cryogenically cooled radiometers on board the Planck satellite, designed to measure the temperature and polarization anisotropies of the cosmic microwave backgrond (CMB) at 30, 44 and 70 GHz. The thermal requirements of the LFI, and in particular the stringent limits to acceptable thermal fluctuations in the 20 K focal plane, are a critical element to achieve the instrument scientific performance. Thermal tests were carried out as part of the on-ground calibration campaign at various stages of instrument integration. In this paper we describe the results and analysis of the tests on the LFI flight model (FM) performed at Thales Laboratories in Milan (Italy) during 2006, with the purpose of experimentally sampling the thermal transfer functions and consequently validating the numerical thermal model describing the dynamic response of the LFI focal plane. This model has been used extensively to assess the ability of LFI to achieve its scientific goals: its validation is therefore extremely important in the context of the Planck mission. Our analysis shows that the measured thermal properties of the instrument show a thermal damping level better than predicted, therefore further reducing the expected systematic effect induced in the LFI maps. We then propose an explanation of the increased damping in terms of non-ideal thermal contacts.Comment: Planck LFI technical papers published by JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/1748-022

    Magnetic field hourly averages from the Rome-GSFC experiment aboard Helios 1 and Helio 2

    Get PDF
    Plots of all the hourly averages computed from the solar magnetic field measurements obtained during the mission are given separately for Helios 1 and Helios 2. The magnitude and the direction of the averaged field are plotted versus the number of solar rotations as seen from Helios, counted from launch

    Planck-LFI radiometers tuning

    Get PDF
    "This paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jinst" This paper describes the Planck Low Frequency Instrument tuning activities performed through the ground test campaigns, from Unit to Satellite Levels. Tuning is key to achieve the best possible instrument performance and tuning parameters strongly depend on thermal and electrical conditions. For this reason tuning has been repeated several times during ground tests and it has been repeated in flight before starting nominal operations. The paper discusses the tuning philosophy, the activities and the obtained results, highlighting developments and changes occurred during test campaigns. The paper concludes with an overview of tuning performed during the satellite cryogenic test campaign (Summer 2008) and of the plans for the just started in-flight calibration.Comment: This is an author-created, un-copyedited version of an article accepted for publication in JINST. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at http://dx.doi.org/10.1088/1748-0221/4/12/T12013

    Fludarabine as a cost-effective adjuvant to enhance engraftment of human normal and malignant hematopoiesis in immunodeficient mice

    Get PDF
    There is still an unmet need for xenotransplantation models that efficiently recapitulate normal and malignant human hematopoiesis. Indeed, there are a number of strategies to generate humanized mice and specific protocols, including techniques to optimize the cytokine environment of recipient mice and drug alternatives or complementary to the standard conditioning regimens, that can be significantly modulated. Unfortunately, the high costs related to the use of sophisticated mouse models may limit the application of these models to studies that require an extensive experimental design. Here, using an affordable and convenient method, we demonstrate that the administration of fludarabine (FludaraTM) promotes the extensive and rapid engraftment of human normal hematopoiesis in immunodeficient mice. Quantification of human CD45+ cells in bone marrow revealed approximately a 102-fold increase in mice conditioned with irradiation plus fludarabine. Engrafted cells in the bone marrow included hematopoietic stem cells, as well as myeloid and lymphoid cells. Moreover, this model proved to be sufficient for robust reconstitution of malignant myeloid hematopoiesis, permitting primary acute myeloid leukemia cells to engraft as early as 8 weeks after the transplant. Overall, these results present a novel and affordable model for engraftment of human normal and malignant hematopoiesis in immunodeficient mice

    Resolving a guanine-quadruplex structure in the SARS-CoV-2 genome through circular dichroism and multiscale molecular modeling

    Get PDF
    The genome of SARS-CoV-2 coronavirus is made up of a single-stranded RNA fragment that can assume a specific secondary structure, whose stability can influence the virus's ability to reproduce. Recent studies have identified putative guanine quadruplex sequences in SARS-CoV-2 genome fragments that are involved in coding for both structural and non-structural proteins. In this contribution, we focus on a specific G-rich sequence referred to as RG-2, which codes for the non-structural protein 10 (Nsp10) and assumes a guanine-quadruplex (G4) arrangement. We provide the secondary structure of RG-2 G4 at atomistic resolution by molecular modeling and simulation, validated by the superposition of experimental and calculated electronic circular dichroism spectra. Through both experimental and simulation approaches, we have demonstrated that pyridostatin (PDS), a widely recognized G4 binder, can bind to and stabilize RG-2 G4 more strongly than RG-1, another G4 forming sequence that was previously proposed as a potential target for antiviral drug candidates. Overall, this study highlights RG-2 as a valuable target to inhibit the translation and replication of SARS-CoV-2, paving the way towards original therapeutic approaches against emerging RNA viruses.Parallel or hybrid? A combination of multiscale molecular modeling and circular dichroism is used to predict a G-quadruplex structure at atomistic resolution in the SARS-CoV-2 genome

    Effect of Fourier filters in removing periodic systematic effects from CMB data

    Full text link
    We consider the application of high-pass Fourier filters to remove periodic systematic fluctuations from full-sky survey CMB datasets. We compare the filter performance with destriping codes commonly used to remove the effect of residual 1/f noise from timelines. As a realistic working case, we use simulations of the typical Planck scanning strategy and Planck Low Frequency Instrument noise performance, with spurious periodic fluctuations that mimic a typical thermal disturbance. We show that the application of Fourier high-pass filters in chunks always requires subsequent normalisation of induced offsets by means of destriping. For a complex signal containing all the astrophysical and instrumental components, the result obtained by applying filter and destriping in series is comparable to the result obtained by destriping only, which makes the usefulness of Fourier filters questionable for removing this kind of effects.Comment: 10 pages, 8 figures, published in Astronomy & Astrophysic

    Thermal susceptibility of the Planck-LFI receivers

    Get PDF
    This paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jinst . This paper describes the impact of the Planck Low Frequency Instrument front end physical temperature fluctuations on the output signal. The origin of thermal instabilities in the instrument are discussed, and an analytical model of their propagation and impact on the receivers signal is described. The experimental test setup dedicated to evaluate these effects during the instrument ground calibration is reported together with data analysis methods. Finally, main results obtained are discussed and compared to the requirements.Comment: This is an author-created, un-copyedited version of an article accepted for publication in Journal of Instrumentation. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at 10.1088/1748-0221/4/12/T1201

    The Planck Telescope

    Full text link
    In this paper we present an overview of the Telescope designed for ESA's mission dedicated to map the Cosmic Microwave Background Anisotropies and Polarization. Two instruments, LFI and HFI, operate in an overall frequency range between 25 and 900 GHz and share the focal region of the 1.5 meter optimized telescope. The optimization techniques adopted for the optical design and the telescope characteristic are reported and discussed.Comment: On behalf of the Planck collaboration. 5 pages, 4 figures. The following article has been submitted for publication in the AIP Proceedings of the Workshop on "Experimental Cosmology at millimeter wavelengths", Cervinia, Italy, 9-13 July 200
    • …
    corecore